
MATHEMATICS OF COMPUTATION
VOLUME 38, NUMBER 157
JANUARY 1982

Fixed Point Iteration with Inexact Function Values

By Peter Alfeld

Absbact. In many iterative schemes, the precision of each step depends on the computa-
tional effort spent on that step. A method of specifying a suitable amount of computation at
each step is described. The approach is adaptive and aimed at minimizing the overall
computational cost subject to attaining a final iterate that satisfies a suitable error criterion.
General and particular cost functions are considered, and a numerical example is given.

1. Introduction. The following situation is common in numerical analysis: Given
is an iterative scheme in which each step itself can only be carried out approxi-
mately. The precision of each step depends on the amount of computational effort
spent on that step. Normally, it would be advantageous to carry out the iteration
steps with a very low precision (i.e., cheaply) initially and then to tighten the
precision requirements as the iteration approaches the final approximation, only
then increasing the cost of each iteration step.

To clarify the concepts, consider the following examples: Iterating a series: If a
fixed point iteration function g, say, is given by an infinite series, then the
computational effort spent at each step depends on the number of terms after
which the series is truncated. The numerical example in Section 5 is of this type.
Nonlinear Equations: Modified Newton methods in which the step is computed
approximately in an inner iteration are a common source of fixed point iterations
with inexact function values (see, e.g., [1], [5], [7]). Unconstrained Minimization: In
those optimization algorithms involving linear searches (see, e.g., [4, pp. 7-8]), the
computational effort at each step depends on the precision with which each linear
search is carried out. Constrained Optimization: One approach to solving con-
strained optimization problems consists of transforming them into an infinite
sequence of unconstrained problems, using barrier or penalty functions. (See, e.g.,
[6, Chapter 6].) Typically, each of the unconstrained problems is solved only
approximately, using some numerical method. Note that in view of the preceding
example we are iterating our basic concept. Shooting Methods for Boundary Value
Problems: Often boundary value problems of ordinary differential equations are
transformed into an infinite sequence of initial value problems (see, e.g., [3, pp.
262-264]), each of which has to be solved numerically, and therefore approxi-
mately.

In all of the above examples, it is apparent that computational efficiency could
be gained by judiciously prescribing the computational effort to be spent at each
step of the iteration.

Received July 8, 1980; revised June 12, 1981.
1980 Mathemnatics Subject Classification. Primary 65-00; Secondary 65B99, 65H 10, 65K05.
Key words and phrases. Iteration, fixed point iteration, efficiency, numerical analysis.

? 1982 American Mathematical Society
0025-57 1 8/82/0000-0471/$04.00

87

88 PETER ALFELD

In this paper, we consider the special case of a linearly convergent fixed point
iteration. No attempt has been made to phrase all of the above examples in this
framework, but many of the concepts and results are applicable.

The basic approach consists of attempting to minimize the overall computational
cost subject to attaining a bound on the error in the final iterate. The suggested
numerical algorithm depends on quantities that can be estimated during the
iteration, primarily the locally valid Lipschitz constant. Since this is dependent on
the particular fixed point problem and may change as the iteration proceeds, the
algorithm is designed to adapt itself to the particular problem and to changing
circumstances.

The following sections contain: a formal description of the problem under
consideration and some general results (Section 2), the analysis of a particular cost
function (Section 3), computational aspects and a suggested algorithm (Section 4),
a numerical example (Section 5), and conclusions.

2. Fixed Point Iteration. At the beginning of this section, we will introduce the
type of iteration under consideration and define some of the terms that we will be
using.

The traditional fixed point iteration is defined by

(2.1) xn+, = G(xn), n = 0, 1, 2, . . .

where G: Rd Rd is a given function and x0 is a given initial vector.
In this paper, we consider instead functions

g: Rd x [0, oc) Rd

and iterations of the form

(2.2) xo E Rd given, xn+ = g(Xn IEn) n = 0, 1, ..., N- 1.

We are interested in the convergence of (2.2) to a point I satisfying

(2.3) x = g(x, 0).

We will refer to x simply as a fixed point of g.
For all x E Rd and e > 0 the vector g(x, e) is an approximation of g(x, 0). We

assume that for given e > 0 we can carry out the approximation such that

(2.4) 11 g(x, E) - g(x, O)11 S E.

The norm is arbitrary, but fixed throughout this paper.
The numbers E0, E I. . . - I are called the control variables of the iteration

(2.2). It is convenient to collect them into a control vector e = [eo, ,T, .. ., .

We will always assume that all control variables are nonnegative.
The iteration (2.2) is said to be infinitely precise if all control variables are zero.

Thus the traditional fixed point iteration (2.1) can be considered the special case of
an infinitely precise iteration (2.2). Whenever it is convenient, we will identify G(x)
with g(x, 0).

We will refer to the quantity IIXN - as the final error. Thus we distinguish
two types of accuracy: that with respect to an approximation of I, described by the
term final error, and that with respect to an approximation of g(xn, 0), described by
the term precision.

INEXACT FUNCTION ITERATION 89

The number N in (2.2) will be determined so as to keep the final error below a
certain bound. It will not be known at the beginning of the iteration, but rather will
be estimated and reestimated as the iteration proceeds. We refer to N as the target
number.

It is well known (by the Contraction-Mapping Theorem) that the traditional
iteration (2.1) converges if there exists a Lipschitz constant L < 1 satisfying
1G(x) - G(y)II < Lllx -yll forallx,y E Rd.

We make the corresponding assumption that there exists a Lipschitz constant
L < 1 satisfying

(2.5) l g(x, 0) - g(y, O)11 < Lllx -y

for all x, y E Rd.
Note our assumption that both the relations (2.4) and (2.5) are valid globally, i.e.,

for all x, y E Rd. This assumption is for convenience only and can be slackened
considerably. However, in this paper we concentrate on the optimal choice of the
control variables e0, el, .. , EN- 1. It is a consequence of the global validity of (2.5)
that g possesses a unique fixed point I satisfying (2.3).

We assume that the computational effort of evaluating g(x, e) is given by a cost
function c: (0, ox) -> R satisfying

(2.6) c(e) > 0 and e < e = c(e) > c(e)

for all e, e > 0. Thus we assume that the cost of evaluating g(x, e) is positive and
monotonic decreasing with e. This is reasonable. More severe (and unrealistic in
some cases) is the simplifying assumption that the cost is independent of x.

At this stage, we have introduced the language to be used in the sequel. The
basic plan is to derive a bound on the final error (Theorems 1 and 2) and to give
necessary and sufficient conditions for a target number and a control vector to
minimize the overall numerical cost subject to keeping that bound below a
specified value (Theorem 5). Theorems 3 and 4 deal with general features of the
iteration (2.2) and are not immediately relevant to the optimization problem.They
can be skipped without loss of continuity.

THEOREM 1. Let xo E Rd be given, and let XN be defined by (2.2) for some target
number N and some control vector e = [eO, El, . E. , N- 1IT. Then

N - I

(2.7) | |XN - x I < E L Nl-ne, + L| xo - x|.
n=O

Proof. The proof is by induction in N and straightforward, using (2.4) and
(2.5). -1

The bound given in (2.7) has the disadvantage of the term llxo - x normally
being unavailable. The next theorem gives a cruder bound that can be computed
(or estimated) if L is known (or can be estimated).

THEOREM 2. Under the assumptions of Theorem 1 there holds

N-I L N

(2.8) ||XN - X < E LN 1 n + 1 -
(IIX(IX Xol0 + en).

90 PETER ALFELD

Proof. Theorem 2 follows from Theorem 1 by observing that

xo - < 1 lixo - g(xo, eo)II + 1g(xo, to) - g(xo, 0)11
+ 11 g(xo, 0) - g(x, 0)11 + 11g(x, 0)- xi

< llx1 - xoll + eo + Lllxo -Xl,

which implies that

lixo - II _ L(eo + llx - xoll). El

Independent of the optimization problem we are considering, it is interesting to
ask under which conditions on the control variables the iteration (2.2) will converge
to x as we let the target number N tend to infinity. This question cannot be
answered without further knowledge about g. For example, if g(x, e) =x for all
x E Rd and e > 0, then the iteration will converge for any choice of the control
variables. On the other hand, if g(x, e) =x + ev, where v is any vector satisfying
llvll = 1, then we have to require that limn+oo en = 0. In both cases the relation
(2.4) is satisfied.

A slightly less interesting but more tractable question to ask is when the bounds
given in Theorems 1 and 2 will converge to zero as N tends to infinity. Obviously,
the final error will tend to zero if the bounds tend to zero. The following theorem
gives a necessary and sufficient condition.

THEOREM 3. For given x0 E Rd, L < 1 and control variables E6, E, e2, .. ., the
right-hand sides of (2.7) and (2.8) converge to zero as N tends to infinity if and only if

(2.9) lim En = 0-

Proof. Since L < 1, for both (2.7) and (2.8) we only have to show that

N-1

lim E L nen = 0 lim en =0.
N--o n=O n-o

Assume that limN EN- LN-1 -"En = 0 and that the sequence eo, El, E2, ... does
not converge to zero. Then there exists a constant y > 0 and a sequence of integers
n,, n2, n3, ... such that

E> y > 0 fori = 0, 1, 2,

(Recall that we assume the control variables e0, el e2, ... to be nonnegative.)
It follows for all integers k that

, L k Nes, > y k = yBk,
n, k n, k

where Bk = 2,k Lk-. Thus, for all r = 0, 1, 2, . . ., B,, > l and

n, r

Y, L -esi > -y fi L n- > -y > O,
i-O i=O

which is a contradiction, establishing the "only if" part of the theorem.

INEXACT FUNCTION ITERATION 91

Assume now that limn- OOEn = 0, and assume we are given some E > 0. Then
there exists an integer M such that En < (1 - L)E for all n > M. Also, there exists
an integer M > M such that

M

Lk-M E LMi < - L
=o

m-,e
i=O 2

for all k > M. Hence, for all k > M,

k M k
k L iEi s Lk-M E LMi + -i

i-O i=O i=M+1

+-(1 - L)e E L'=2+ =E
2 2'i''O 2 2

which completes the proof. EO
Remark. It is plausible that limn-0 En = 0 is a necessary condition for the bounds

in Theorem 1 to converge to zero, but it is not obvious that this condition is also
sufficient.

We now start considering the overall cost of the iteration (2.2) defined by a
control vector e = [EO, El, . . . , EN- 1]. This is given by

N-1

(2.10) *(N, e) := c(En).
n-O

Ideally, we would like to find N and e so as to minimize I subject to keeping the
final error IIXN-I 11 below a specified number rj, say. This is impractical, but it is
possible to minimize I subject to keeping one of the bounds given in Theorems 1
and 2 below rj. In view of its computability, the bound (2.8) given in Theorem 2
might seem more attractive to use, but it has certain shortcomings that will be
pointed out below. We will base our analysis on the bound (2.7) and deal with the
problem of estimating lIxo - in Section 4.

Thus we arrive at the constrained minimization problem (COP):
Find N and e = [Eo E,l . .. , 1f' such that

N-1

(2.11) *(N, e) =2 c(6n) = min
n=O

subject to

N-1

(2.12) b(1N, e):= E L'En + LNIIx0 - x I =
n-O

Note that in (2.12) we assume equality instead of inequality. This simplifies the
subsequent analysis and is no restriction of generality, since the monotonicity of c
implies that there exist minimizing N and e for which O(N, e) = rj whenever COP
has a solution.

Before we tackle the above problem we take a formal note of the intuitively
obvious fact that the optimum sequence of control variables is monotonically
decreasing.

92 PETER ALFELD

THEOREM 4. Assume L E (0, 1), N E N, and -q E R are given constants, and
e = [El, tl... ., I jT minimizes 4{N, e) subject to 1(N, e) < -. Also assume that c
is strictly monotonically decreasing. Then, for all n = 1, 2, .. ., N- 1,

En < En-1*

Proof. The proof is by contradiction. First observe that because of the strict
monotonicity of c, the constraint 1(N, e) < (q is active, i.e., at the minimizing
(N, e) we have 1(N, e) = -. Now assume that for some n E (1, 2, .. ., N - 1)
there holds En >, -n_. Let e = o, l. . . , 1N_ , where - = if i i {n, n - 1),
in = En_,, En_ = En. Then obviously I(N, e) = I(N, e). Furthermore

1(N, e) - 1(N, e) =L NIn(En in) + L (En-1 En-1)

= (En-tn E-,)LN n(1 - L) > 0.

Hence 1(N, e) < b(N, e) = q; i.e., *4(N, e) = 4pfN, eJ) without the constraint being
active. Hence the value of xp(N, e) can be reduced, which is a contradiction. El

Remark. It is easy to see that, in the case L E (0, 2) to has to be less than El if
the cost is to be minimized subject to keeping the bound given in Theorem 2 below
1. This is an artifact of bounding llxo - xII by (Ilxl - xoll + co)/(I - L) (thus

making the second term in (2.8) dependent on to) and suggests basing the analysis
and the algorithm on the more natural bound (2.7).

We now state necessary and sufficient conditions for the solution of COP.

THEOREM 5. Assume N E N and - > 0 are given, and c E C '(0, oo). Then
e = [Eo E1. . ., EEN,IT uniquely minimizes I(N, e) subject to 4(N, e) = -q only if
there exists a constant A such that

(2.13) Ct(tn) = XLN-1-n n = O, I,, N- 1.

If c is strictly convex, then this condition is also sufficient.

Proof. Consider the Lagrange function L(X, N, e) = I(N, e) - XA(N, e), where
X is the Lagrange multiplier. A necessary condition for e to minimize I(N, e)
subject to 1(N, e) = 7 is that

ae ab- L(A, N, e) = 0

for some X, which is just (2.13). Assume now that (2.13) is satisfied for some vector
e. Since 1(N, e) is linear in e, the set {e, cp(N, e) = q) is affine (and convex). The
function 41(N, e) is strictly convex in e (since c(E) is a strictly convex function of E).
Thus the stationary point e is a local minimizer of 41(N, .). Since a strictly convex
function possesses at most one local minimizer in a convex set, e is unique. This
completes the proof. EJ

We have now assembled the basic tools to solve COP. For any particular cost
function c, we can proceed as follows:

1. Solve (2.13) for En in terms of n, X, L, and N.
2. Compute 1D(N, e) and solve (2.12) for X (in terms of L and N).
3. Minimize I(N, e) with respect to N. Given L, this is an unconstrained

minimization problem.

INEXACT FUNCTrION ITERATION 93

3. A Particular Cost Function. We will now study a particular instance of the cost
function c. Note that the solution of COP is independent of any constant factor
multiplying c. We can thus restrict our attention to some canonical form of c. For
convenience, and because it will turn out to be reasonable computationally, we will
treat the target number N as a real variable. The following theorem covers the case
that c(c) = E-P for some p > 0.

THEOREM 6. Suppose c(c) = fP for some p > 0. Then the solution of the problem
COP is given by

(3.1) N =-(p + 1) lnllxo-XIIA

and

(3.2) En = KL(1 ~~+ n- N)/(p+ 1) (3.2) en=X

where

(3.3) K N L llx xoll)

and

(3.4) ? =LPAP-.

Proof. The cost function c is continuously differentiable and strictly convex.
Hence, by Theorem 5, for any fixed N, there exists a unique solution of COP which
is characterized by (2.13). We will now follow the strategy outlined at the end of
the preceding section.

The equation (2.13) becomes

-pE-PC -1 =xLN 1n

which yields (3.2) with

(3.5) K = (

To determine K (and thereby X) we compute
N-I

1(N, e) = LN lnKL(l+n-N)/+l) + LNIIx -

n=O

?N1
- K + L |Ixo - X II,

where ? is given by (3.4). Solving '1(N, e) = -q for K yields (3.3).
To obtain the optimum (real) value of N, we compute

N-i ^-1 ^N-1

(3.6) I(N, e) = = K1
n=OL

Differentiating w.r.t. N and setting equal to zero yields, after some manipulation,
the equation

(3.7) (71 L Ixo L|) ?1) lp(l
_

?j) '(In L)

X (- ^N N rIIXl _
*

11) = 0.

94 PETER ALFELD

Of the factors on the left-hand side of (3.7), the first five are nonzero, independent
of the choice of N > 0. The unique value of N that makes the last factor vanish is
given by (3.1). That this value of N indeed minimizes I follows from its unique-
ness, the fact that I is bounded below, and the observation that the cost subject to
satisfying (2.12) tends to infinity as N tends to

(3.8) No = _ IIx -

In L

(see Remark 2 below). EJ
Remarks. 1. The Lagrange multiplier A and the actual cost of the optimal

iteration can be computed using (3.5) and (3.6), respectively.
2. In the case of an infinitely precise iteration (2.2) (i.e. en = 0, n = 0, 1,...

N - 1), the number of iterations required subject to (2.12) is given by No defined in
(3.8). By (3.1), the optimal number of iterations is (p + 1)NO. This is a surprisingly
simple result.

4. Computational Aspects. In this section, we discuss how the results in the
preceding sections can be used to solve iterations of the type (2.2) efficiently. No
effort has been made, however, to specify a robust algorithm to the point that it
can be readily implemented into a piece of production software.

We will assume that the actual cost can be modelled by a function c(c) = ES, for
some given fixed p > 0, and apply Theorem 6. (Later we will discuss the validity of
this approach and a method of approximatingp.)

Any algorithm should be such that the user has to supply as little information
about the fixed point problem as possible, i.e., that as many of the important
parameters as possible are generated automatically. Moreover, the nature of the
problem may change as the iteration proceeds, thus making it desirable to update
the controlling parameters as soon as new information becomes available. Hence
we will consider each point xk as the starting point of a new iteration (2.2), (i.e., Xk

will play the role of x0). For each xk we will reestimate the key quantities L and

llxk - x, based on which we will compute a new estimate of N. Note that, since
the optimal value of N cannot be computed exactly, there is no point in insisting on
N being integer.

It is important to note that we need estimates of L and llxk - xj rather than
bounds. If jj - jj is overestimated, the algorithm will choose Ek too large, and
the iteration may never converge. Likewise, if L is overestimated, the target number
and therefore Ek will be too large. On the other hand, if IXk - Ij or L are
underestimated, then Ek will be smaller than necessary, thus impairing efficiency.

In what follows, L will be approximated by L, llxk - xj by a, and N by N. A
simple way of estimating L is given by

IIXk Xk-,11
IIXk..I - Xk-211

INEXACTr FUNCTION ITERATION 95

However, due to the imprecision of (2.2), L may be greater than 1. Thus we define

(4.1) L = mn
lXk- Xk-211

where /8 E (0, 1) is a constant that is either supplied by the user or treated as an
internal parameter.

More difficult is the specification of a. Consider for the moment the case of a
scalar iteration (2.1). Ignoring the imprecision of the iteration, it is easy to see that

IXk - X I <l L - Xk-1

suggesting

L
a =

- L IXk - Xk-11l1

This works quite well if G'(xk) > 0, and L is close to G'(xk). It is a gross
overestimate, however, if G'(xk) < 0. Therefore we consider, instead of (2.1), the
iteration

n+2= G(G(xk)).

The derivative of this iteration function is usually positive, and its Lipschitz
constant is L2, suggesting

(4.2) a = 1
L2 I|Xk - Xk-211,

which is a good estimate independent of the sign of G'.
In the system case we need to consider instead the eigenvalues of G'. If these

have nonvanishing imaginary parts, then there will be components of the iterates
that oscillate with various frequencies. In that case it is necessary to estimate the

frequencies of the dominant eigenvalues or to monitor the behavior of the En and
force their convergence to zero (see Theorem 3). We will not pursue this question
further and adopt instead (4.2).

Both the estimates (4.1) and (4.2) lead to a starting problem. They are not
available if k < 2. Thus we require starting values of L and a. Again, these may be
internal parameters or be supplied by the user. Both L and lIxo - should be
underestimated initially, rather than overestimated. Otherwise the precision of the

first two steps would be too low, yielding unreliable values of L and a at the

following steps.
Given a and L, N and ek can be computed from (3.1) and (3.2). N is the

estimated number of iteration steps still to go (hence the term target number). Thus
it would be natural to terminate the iteration as soon as N < 0. However, it is safer

to require that N < -d < 0 for some internal parameter 6 > 0.
The following outline provides a basis on which an algorithm can be built. The

iteration counter is k.

96 PETER ALFELD

Constant p algorithm

GIVEN xo, -, a, L, /, p, 6; k := 0

REPEAT

IFk > 1 THEN

? min{ IIXk - Xk-1II L :=min IXk1 - Xk11

AND a= 1-2 lX Xk-211

N :=-_(p + I)lnl(a/fnl

IF N < -8 THEN STOP

L := -P/(P +1
L~~
K = (n-LNa)

1-LN

Ek = 9()/(p+ 1)

Xk+1 I g(Xk ek)

k := k + 1
GO TO REPEAT

A weakness of the above approach is that p is constant and assumed to be
known. Often cost functions will be integer valued step functions (giving, e.g., the
number of evaluations or arithmetic operations) and certainly not of the form
c(c) = "-P for any value p. One possibility of estimating p is local interpolation of
the actual cost. Suppose we measure Ck -2 = C(Ek -2) and Ck - = c(Ek - 1). Then
solving c* = ye7-P (i = k - 2, k - 1) forp yields

In Ck-2/Ck-I
= lnk/k PInek -2/Ek -I

If c is not sufficiently smooth, least square approximation could be used. In
numerical experiments the efficiency of the algorithm seemed to be very insensitive
with respect to p.

5. Numerical Example. We consider the fixed point function

(5.1) g(X, 0) = Y(3 4 - k cos kx),

where y is a parameter. This is just the Fourier series of g(x, 0) = y(7r2 _ X2). It
turns out that

2 = (;4y22+
1 -1) and G'() = -2-yx < 0.

INEXACT FUNCTION ITERATION 97

The series in (5.1) was truncated as soon as (2.4) was satisfied. The cost c(c) was
defined to be the number of cos evaluations in (5.1). This generates a piecewise
constant cost function with steps of greatly varying length.

The Constant p Algorithm was applied with /8 = 0.99, 6 = 1, xo = + 0.5,

= 10-7, and L = a = 0.1 initially.
The following table gives numerical results for y = 0.2 (G'(x) = -0.61) and

y = 0.25 (G'(x) = -0.86), and p = 0.1, 0.2, . . ., 1.0. The integer m is the overall
computational effort until convergence was reached. For comparison purposes the
iteration was also carried out with ek kept constant and equal to the control
variable at the last step of the Constant p Algorithm. The number a is the ratio of
the effort for the constant precision iteration and m. We observe that the gain in
efficiency is quite insensitive with respect to p (and y). The actual efficiency is also
insensitive with respect to p if p > 0.3. It is remarkable that the above results were
obtained in spite of the true cost being a step function that is only poorly modelled
by c(E) = eP, for any p. For all iterations the final error was smaller than the
specified value of -q. The computed value of L was always less than ,8.

TABLE 1. Numerical Results

0.2 0.25
p m a m a

0.1 4,776 5.0 25,761 5.1
0.2 4,061 5.4 19,984 5.2
0.3 3,723 5.6 18,013 5.3
0.4 2,826 6.1 13,816 5.0
0.5 2,826 5.8 13,117 5.9
0.6 3,077 5.0 12,852 6.0
0.7 2,834 6.0 11,966 5.9
0.8 2,833 5.9 12,494 5.5
0.9 2,943 4.8 12,243 5.4
1.0 2,943 4.7 12,130 5.4

Conclusions. A method has been suggested for carrying out inexact function
iterations efficiently. Apparently this problem has not been tackled before in the
generality attempted here. The ideas and concepts are applicable to a wide range of
numerical problems, including the iteration of series, the solution of nonlinear
equations, constrained and unconstrained minimization, and shooting methods for
boundary value problems.

Acknowledgements. The technical manipulations in this paper were carried out
using the symbol manipulation language REDUCE [2]. The author greatly ap-
preciates the careful work of the referee who detected a significant error in the
analysis of another particular cost function. Helpful discussions with Frank Stenger
and Jim Keener of the University of Utah are gratefully acknowledged.

Department of Mathematics
University of Utah
Salt Lake City, Utah 84112

98 PETER ALFELD

1. R. S. DEMBO, S. C. EISENSTAT & T. STEIHAUG, Inexact Newton Methods, Working Paper #47
(Series B), Yale School of Organization and Management, 1980.

2. A. C. HEARN, REDUCE User's Manual, 2nd ed., Report UCP-l9, Department of Computer
Science, University of Utah, 1973.

3. J. D. LAMBERT, Computational Methods in Ordinary Differential Equations, Wiley, New York, 1973.
4. W. MURRAY, Numerical Methods for Unconstrained Optimization, Academic Press, New York, 1972.
5. V. PEREYRA, "Accelerating the convergence of discretization algorithms," SIAM J. Numer. Anal.,

v. 4, 1967, pp. 508-533.
6. D. M. RYAN, "Penalty and barrier functions," in Numerical Methods for Constrained Optimization

(P. E. Gill and W. Murray, Eds.), Academic Press, New York, 1974.
7. A. H. SHERMAN, "On Newton-iterative methods for the solution of systems of nonlinear equations,"

SIAM J. Numer. Anal., v. 15, 1978, pp. 755-771.

	Cit r84_c88:

