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Fixed Point Iteration with Inexact Function Values 

By Peter Alfeld 

Absbact. In many iterative schemes, the precision of each step depends on the computa- 
tional effort spent on that step. A method of specifying a suitable amount of computation at 
each step is described. The approach is adaptive and aimed at minimizing the overall 
computational cost subject to attaining a final iterate that satisfies a suitable error criterion. 
General and particular cost functions are considered, and a numerical example is given. 

1. Introduction. The following situation is common in numerical analysis: Given 
is an iterative scheme in which each step itself can only be carried out approxi- 
mately. The precision of each step depends on the amount of computational effort 
spent on that step. Normally, it would be advantageous to carry out the iteration 
steps with a very low precision (i.e., cheaply) initially and then to tighten the 
precision requirements as the iteration approaches the final approximation, only 
then increasing the cost of each iteration step. 

To clarify the concepts, consider the following examples: Iterating a series: If a 
fixed point iteration function g, say, is given by an infinite series, then the 
computational effort spent at each step depends on the number of terms after 
which the series is truncated. The numerical example in Section 5 is of this type. 
Nonlinear Equations: Modified Newton methods in which the step is computed 
approximately in an inner iteration are a common source of fixed point iterations 
with inexact function values (see, e.g., [1], [5], [7]). Unconstrained Minimization: In 
those optimization algorithms involving linear searches (see, e.g., [4, pp. 7-8]), the 
computational effort at each step depends on the precision with which each linear 
search is carried out. Constrained Optimization: One approach to solving con- 
strained optimization problems consists of transforming them into an infinite 
sequence of unconstrained problems, using barrier or penalty functions. (See, e.g., 
[6, Chapter 6].) Typically, each of the unconstrained problems is solved only 
approximately, using some numerical method. Note that in view of the preceding 
example we are iterating our basic concept. Shooting Methods for Boundary Value 
Problems: Often boundary value problems of ordinary differential equations are 
transformed into an infinite sequence of initial value problems (see, e.g., [3, pp. 
262-264]), each of which has to be solved numerically, and therefore approxi- 
mately. 

In all of the above examples, it is apparent that computational efficiency could 
be gained by judiciously prescribing the computational effort to be spent at each 
step of the iteration. 
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In this paper, we consider the special case of a linearly convergent fixed point 
iteration. No attempt has been made to phrase all of the above examples in this 
framework, but many of the concepts and results are applicable. 

The basic approach consists of attempting to minimize the overall computational 
cost subject to attaining a bound on the error in the final iterate. The suggested 
numerical algorithm depends on quantities that can be estimated during the 
iteration, primarily the locally valid Lipschitz constant. Since this is dependent on 
the particular fixed point problem and may change as the iteration proceeds, the 
algorithm is designed to adapt itself to the particular problem and to changing 
circumstances. 

The following sections contain: a formal description of the problem under 
consideration and some general results (Section 2), the analysis of a particular cost 
function (Section 3), computational aspects and a suggested algorithm (Section 4), 
a numerical example (Section 5), and conclusions. 

2. Fixed Point Iteration. At the beginning of this section, we will introduce the 
type of iteration under consideration and define some of the terms that we will be 
using. 

The traditional fixed point iteration is defined by 

(2.1) xn+, = G(xn), n = 0, 1, 2, . . . 

where G: Rd Rd is a given function and x0 is a given initial vector. 
In this paper, we consider instead functions 

g: Rd x [0, oc) Rd 

and iterations of the form 

(2.2) xo E Rd given, xn+ = g(Xn IEn) n = 0, 1, ..., N- 1. 

We are interested in the convergence of (2.2) to a point I satisfying 

(2.3) x = g(x, 0). 

We will refer to x simply as a fixed point of g. 
For all x E Rd and e > 0 the vector g(x, e) is an approximation of g(x, 0). We 

assume that for given e > 0 we can carry out the approximation such that 

(2.4) 11 g(x, E) - g(x, O)11 S E. 

The norm is arbitrary, but fixed throughout this paper. 
The numbers E0, E I. . . - I are called the control variables of the iteration 

(2.2). It is convenient to collect them into a control vector e = [eo, ,T, .. ., . 

We will always assume that all control variables are nonnegative. 
The iteration (2.2) is said to be infinitely precise if all control variables are zero. 

Thus the traditional fixed point iteration (2.1) can be considered the special case of 
an infinitely precise iteration (2.2). Whenever it is convenient, we will identify G(x) 
with g(x, 0). 

We will refer to the quantity IIXN - as the final error. Thus we distinguish 
two types of accuracy: that with respect to an approximation of I, described by the 
term final error, and that with respect to an approximation of g(xn, 0), described by 
the term precision. 
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The number N in (2.2) will be determined so as to keep the final error below a 
certain bound. It will not be known at the beginning of the iteration, but rather will 
be estimated and reestimated as the iteration proceeds. We refer to N as the target 
number. 

It is well known (by the Contraction-Mapping Theorem) that the traditional 
iteration (2.1) converges if there exists a Lipschitz constant L < 1 satisfying 
1G(x) - G(y)II < Lllx -yll forallx,y E Rd. 

We make the corresponding assumption that there exists a Lipschitz constant 
L < 1 satisfying 

(2.5) l g(x, 0) - g(y, O)11 < Lllx -y 

for all x, y E Rd. 
Note our assumption that both the relations (2.4) and (2.5) are valid globally, i.e., 

for all x, y E Rd. This assumption is for convenience only and can be slackened 
considerably. However, in this paper we concentrate on the optimal choice of the 
control variables e0, el, .. , EN- 1. It is a consequence of the global validity of (2.5) 
that g possesses a unique fixed point I satisfying (2.3). 

We assume that the computational effort of evaluating g(x, e) is given by a cost 
function c: (0, ox) -> R satisfying 

(2.6) c(e) > 0 and e < e = c(e) > c(e) 

for all e, e > 0. Thus we assume that the cost of evaluating g(x, e) is positive and 
monotonic decreasing with e. This is reasonable. More severe (and unrealistic in 
some cases) is the simplifying assumption that the cost is independent of x. 

At this stage, we have introduced the language to be used in the sequel. The 
basic plan is to derive a bound on the final error (Theorems 1 and 2) and to give 
necessary and sufficient conditions for a target number and a control vector to 
minimize the overall numerical cost subject to keeping that bound below a 
specified value (Theorem 5). Theorems 3 and 4 deal with general features of the 
iteration (2.2) and are not immediately relevant to the optimization problem.They 
can be skipped without loss of continuity. 

THEOREM 1. Let xo E Rd be given, and let XN be defined by (2.2) for some target 
number N and some control vector e = [eO, El, . E. , N- 1IT. Then 

N - I 

(2.7) | |XN - x I < E L Nl-ne, + L| xo - x|. 
n=O 

Proof. The proof is by induction in N and straightforward, using (2.4) and 
(2.5). -1 

The bound given in (2.7) has the disadvantage of the term llxo - x normally 
being unavailable. The next theorem gives a cruder bound that can be computed 
(or estimated) if L is known (or can be estimated). 

THEOREM 2. Under the assumptions of Theorem 1 there holds 

N-I L N 

(2.8) ||XN - X < E LN 1 n + 1 - 
(IIX(IX Xol0 + en). 
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Proof. Theorem 2 follows from Theorem 1 by observing that 

xo - < 1 lixo - g(xo, eo)II + 1g(xo, to) - g(xo, 0)11 
+ 11 g(xo, 0) - g(x, 0)11 + 11g(x, 0)- xi 

< llx1 - xoll + eo + Lllxo -Xl, 

which implies that 

lixo - II _ L(eo + llx - xoll). El 

Independent of the optimization problem we are considering, it is interesting to 
ask under which conditions on the control variables the iteration (2.2) will converge 
to x as we let the target number N tend to infinity. This question cannot be 
answered without further knowledge about g. For example, if g(x, e) =x for all 
x E Rd and e > 0, then the iteration will converge for any choice of the control 
variables. On the other hand, if g(x, e) =x + ev, where v is any vector satisfying 
llvll = 1, then we have to require that limn+oo en = 0. In both cases the relation 
(2.4) is satisfied. 

A slightly less interesting but more tractable question to ask is when the bounds 
given in Theorems 1 and 2 will converge to zero as N tends to infinity. Obviously, 
the final error will tend to zero if the bounds tend to zero. The following theorem 
gives a necessary and sufficient condition. 

THEOREM 3. For given x0 E Rd, L < 1 and control variables E6, E, e2, .. ., the 
right-hand sides of (2.7) and (2.8) converge to zero as N tends to infinity if and only if 

(2.9) lim En = 0- 

Proof. Since L < 1, for both (2.7) and (2.8) we only have to show that 

N-1 

lim E L nen = 0 lim en =0. 
N--o n=O n-o 

Assume that limN EN- LN-1 -"En = 0 and that the sequence eo, El, E2, ... does 
not converge to zero. Then there exists a constant y > 0 and a sequence of integers 
n,, n2, n3, ... such that 

E> y > 0 fori = 0, 1, 2, .... 

(Recall that we assume the control variables e0, el e2, ... to be nonnegative.) 
It follows for all integers k that 

, L k Nes, > y k = yBk, 
n, k n, k 

where Bk = 2,k Lk-. Thus, for all r = 0, 1, 2, . . ., B,, > l and 

n, r 

Y, L -esi > -y fi L n- > -y > O, 
i-O i=O 

which is a contradiction, establishing the "only if" part of the theorem. 
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Assume now that limn- OOEn = 0, and assume we are given some E > 0. Then 
there exists an integer M such that En < (1 - L)E for all n > M. Also, there exists 
an integer M > M such that 

M 

Lk-M E LMi < - L 
=o 

m-,e 
i=O 2 

for all k > M. Hence, for all k > M, 

k M k 
k L iEi s Lk-M E LMi + -i 

i-O i=O i=M+1 

+-(1 - L)e E L'=2+ =E 
2 2'i''O 2 2 

which completes the proof. EO 
Remark. It is plausible that limn-0 En = 0 is a necessary condition for the bounds 

in Theorem 1 to converge to zero, but it is not obvious that this condition is also 
sufficient. 

We now start considering the overall cost of the iteration (2.2) defined by a 
control vector e = [EO, El, . . . , EN- 1]. This is given by 

N-1 

(2.10) *(N, e) := c(En). 
n-O 

Ideally, we would like to find N and e so as to minimize I subject to keeping the 
final error IIXN-I 11 below a specified number rj, say. This is impractical, but it is 
possible to minimize I subject to keeping one of the bounds given in Theorems 1 
and 2 below rj. In view of its computability, the bound (2.8) given in Theorem 2 
might seem more attractive to use, but it has certain shortcomings that will be 
pointed out below. We will base our analysis on the bound (2.7) and deal with the 
problem of estimating lIxo - in Section 4. 

Thus we arrive at the constrained minimization problem (COP): 
Find N and e = [Eo E,l . .. , 1f' such that 

N-1 

(2.11) *(N, e) =2 c(6n) = min 
n=O 

subject to 

N-1 

(2.12) b(1N, e):= E L'En + LNIIx0 - x I = 
n-O 

Note that in (2.12) we assume equality instead of inequality. This simplifies the 
subsequent analysis and is no restriction of generality, since the monotonicity of c 
implies that there exist minimizing N and e for which O(N, e) = rj whenever COP 
has a solution. 

Before we tackle the above problem we take a formal note of the intuitively 
obvious fact that the optimum sequence of control variables is monotonically 
decreasing. 
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THEOREM 4. Assume L E (0, 1), N E N, and -q E R are given constants, and 
e = [El, tl... ., I jT minimizes 4{N, e) subject to 1(N, e) < -. Also assume that c 
is strictly monotonically decreasing. Then, for all n = 1, 2, .. ., N- 1, 

En < En-1* 

Proof. The proof is by contradiction. First observe that because of the strict 
monotonicity of c, the constraint 1(N, e) < (q is active, i.e., at the minimizing 
(N, e) we have 1(N, e) = -. Now assume that for some n E (1, 2, .. ., N - 1) 
there holds En >, -n_. Let e = o, l. . . , 1N_ , where - = if i i {n, n - 1), 
in = En_,, En_ = En. Then obviously I(N, e) = I(N, e). Furthermore 

1(N, e) - 1(N, e) =L NIn(En in) + L (En-1 En-1) 

= (En-tn E-,)LN n(1 - L) > 0. 

Hence 1(N, e) < b(N, e) = q; i.e., *4(N, e) = 4pfN, eJ) without the constraint being 
active. Hence the value of xp(N, e) can be reduced, which is a contradiction. El 

Remark. It is easy to see that, in the case L E (0, 2) to has to be less than El if 
the cost is to be minimized subject to keeping the bound given in Theorem 2 below 
1. This is an artifact of bounding llxo - xII by (Ilxl - xoll + co)/(I - L) (thus 

making the second term in (2.8) dependent on to) and suggests basing the analysis 
and the algorithm on the more natural bound (2.7). 

We now state necessary and sufficient conditions for the solution of COP. 

THEOREM 5. Assume N E N and - > 0 are given, and c E C '(0, oo). Then 
e = [Eo E1. . ., EEN,IT uniquely minimizes I(N, e) subject to 4(N, e) = -q only if 
there exists a constant A such that 

(2.13) Ct(tn) = XLN-1-n n = O, I, ... ., N- 1. 

If c is strictly convex, then this condition is also sufficient. 

Proof. Consider the Lagrange function L(X, N, e) = I(N, e) - XA(N, e), where 
X is the Lagrange multiplier. A necessary condition for e to minimize I(N, e) 
subject to 1(N, e) = 7 is that 

ae ab- L(A, N, e) = 0 

for some X, which is just (2.13). Assume now that (2.13) is satisfied for some vector 
e. Since 1(N, e) is linear in e, the set {e, cp(N, e) = q) is affine (and convex). The 
function 41(N, e) is strictly convex in e (since c(E) is a strictly convex function of E). 
Thus the stationary point e is a local minimizer of 41(N, .). Since a strictly convex 
function possesses at most one local minimizer in a convex set, e is unique. This 
completes the proof. EJ 

We have now assembled the basic tools to solve COP. For any particular cost 
function c, we can proceed as follows: 

1. Solve (2.13) for En in terms of n, X, L, and N. 
2. Compute 1D(N, e) and solve (2.12) for X (in terms of L and N). 
3. Minimize I(N, e) with respect to N. Given L, this is an unconstrained 

minimization problem. 
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3. A Particular Cost Function. We will now study a particular instance of the cost 
function c. Note that the solution of COP is independent of any constant factor 
multiplying c. We can thus restrict our attention to some canonical form of c. For 
convenience, and because it will turn out to be reasonable computationally, we will 
treat the target number N as a real variable. The following theorem covers the case 
that c(c) = E-P for some p > 0. 

THEOREM 6. Suppose c(c) = fP for some p > 0. Then the solution of the problem 
COP is given by 

(3.1) N =-(p + 1) lnllxo-XIIA 

and 

(3.2) En = KL( 1 ~~+ n- N )/(p+ 1) (3.2) en=X 

where 

(3.3) K N L llx xoll) 

and 

(3.4) ? =LPAP-. 

Proof. The cost function c is continuously differentiable and strictly convex. 
Hence, by Theorem 5, for any fixed N, there exists a unique solution of COP which 
is characterized by (2.13). We will now follow the strategy outlined at the end of 
the preceding section. 

The equation (2.13) becomes 

-pE-PC -1 =xLN 1n 

which yields (3.2) with 

(3.5) K = ( 

To determine K (and thereby X) we compute 
N-I 

1(N, e) = LN lnKL(l+n-N)/+l) + LNIIx - 

n=O 

?N1 
- K + L |Ixo - X II, 

where ? is given by (3.4). Solving '1(N, e) = -q for K yields (3.3). 
To obtain the optimum (real) value of N, we compute 

N-i ^-1 ^N-1 

(3.6) I(N, e) = = K1 
n=OL 

Differentiating w.r.t. N and setting equal to zero yields, after some manipulation, 
the equation 

(3.7) (71 L Ixo L|) ?1) lp(l 
_ 

?j) '(In L) 

X (- ^N N rIIXl _ 
* 

11) = 0. 
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Of the factors on the left-hand side of (3.7), the first five are nonzero, independent 
of the choice of N > 0. The unique value of N that makes the last factor vanish is 
given by (3.1). That this value of N indeed minimizes I follows from its unique- 
ness, the fact that I is bounded below, and the observation that the cost subject to 
satisfying (2.12) tends to infinity as N tends to 

(3.8) No = _ IIx - 

In L 

(see Remark 2 below). EJ 
Remarks. 1. The Lagrange multiplier A and the actual cost of the optimal 

iteration can be computed using (3.5) and (3.6), respectively. 
2. In the case of an infinitely precise iteration (2.2) (i.e. en = 0, n = 0, 1,... 

N - 1), the number of iterations required subject to (2.12) is given by No defined in 
(3.8). By (3.1), the optimal number of iterations is (p + 1)NO. This is a surprisingly 
simple result. 

4. Computational Aspects. In this section, we discuss how the results in the 
preceding sections can be used to solve iterations of the type (2.2) efficiently. No 
effort has been made, however, to specify a robust algorithm to the point that it 
can be readily implemented into a piece of production software. 

We will assume that the actual cost can be modelled by a function c(c) = ES, for 
some given fixed p > 0, and apply Theorem 6. (Later we will discuss the validity of 
this approach and a method of approximatingp.) 

Any algorithm should be such that the user has to supply as little information 
about the fixed point problem as possible, i.e., that as many of the important 
parameters as possible are generated automatically. Moreover, the nature of the 
problem may change as the iteration proceeds, thus making it desirable to update 
the controlling parameters as soon as new information becomes available. Hence 
we will consider each point xk as the starting point of a new iteration (2.2), (i.e., Xk 

will play the role of x0). For each xk we will reestimate the key quantities L and 

llxk - x, based on which we will compute a new estimate of N. Note that, since 
the optimal value of N cannot be computed exactly, there is no point in insisting on 
N being integer. 

It is important to note that we need estimates of L and llxk - xj rather than 
bounds. If jj - jj is overestimated, the algorithm will choose Ek too large, and 
the iteration may never converge. Likewise, if L is overestimated, the target number 
and therefore Ek will be too large. On the other hand, if IXk - Ij or L are 
underestimated, then Ek will be smaller than necessary, thus impairing efficiency. 

In what follows, L will be approximated by L, llxk - xj by a, and N by N. A 
simple way of estimating L is given by 

IIXk Xk-,11 
IIXk..I - Xk-211 
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However, due to the imprecision of (2.2), L may be greater than 1. Thus we define 

(4.1) L = mn 
lXk- Xk-211 

where /8 E (0, 1) is a constant that is either supplied by the user or treated as an 
internal parameter. 

More difficult is the specification of a. Consider for the moment the case of a 
scalar iteration (2.1). Ignoring the imprecision of the iteration, it is easy to see that 

IXk - X I <l L - Xk-1 

suggesting 

L 
a = 

- L IXk - Xk-11l1 

This works quite well if G'(xk) > 0, and L is close to G'(xk). It is a gross 
overestimate, however, if G'(xk) < 0. Therefore we consider, instead of (2.1), the 
iteration 

n+2= G(G(xk)). 

The derivative of this iteration function is usually positive, and its Lipschitz 
constant is L2, suggesting 

(4.2) a = 1 
L2 I|Xk - Xk-211, 

which is a good estimate independent of the sign of G'. 
In the system case we need to consider instead the eigenvalues of G'. If these 

have nonvanishing imaginary parts, then there will be components of the iterates 
that oscillate with various frequencies. In that case it is necessary to estimate the 

frequencies of the dominant eigenvalues or to monitor the behavior of the En and 
force their convergence to zero (see Theorem 3). We will not pursue this question 
further and adopt instead (4.2). 

Both the estimates (4.1) and (4.2) lead to a starting problem. They are not 
available if k < 2. Thus we require starting values of L and a. Again, these may be 
internal parameters or be supplied by the user. Both L and lIxo - should be 
underestimated initially, rather than overestimated. Otherwise the precision of the 

first two steps would be too low, yielding unreliable values of L and a at the 

following steps. 
Given a and L, N and ek can be computed from (3.1) and (3.2). N is the 

estimated number of iteration steps still to go (hence the term target number). Thus 
it would be natural to terminate the iteration as soon as N < 0. However, it is safer 

to require that N < -d < 0 for some internal parameter 6 > 0. 
The following outline provides a basis on which an algorithm can be built. The 

iteration counter is k. 
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Constant p algorithm 

GIVEN xo, -, a, L, /, p, 6; k := 0 

REPEAT 

IFk > 1 THEN 

? min{ IIXk - Xk-1II L :=min IXk1 - Xk11 

AND a= 1-2 lX Xk-211 

N :=-_(p + I)lnl(a/fnl 

IF N < -8 THEN STOP 

L := -P/(P +1 
L~~ 
K = (n-LNa) 

1-LN 

Ek = 9( )/(p+ 1) 

Xk+1 I g(Xk ek) 

k := k + 1 
GO TO REPEAT 

A weakness of the above approach is that p is constant and assumed to be 
known. Often cost functions will be integer valued step functions (giving, e.g., the 
number of evaluations or arithmetic operations) and certainly not of the form 
c(c) = "-P for any value p. One possibility of estimating p is local interpolation of 
the actual cost. Suppose we measure Ck -2 = C(Ek -2) and Ck - = c(Ek - 1). Then 
solving c* = ye7-P (i = k - 2, k - 1) forp yields 

In Ck-2/Ck-I 
= lnk/k PInek -2/Ek -I 

If c is not sufficiently smooth, least square approximation could be used. In 
numerical experiments the efficiency of the algorithm seemed to be very insensitive 
with respect to p. 

5. Numerical Example. We consider the fixed point function 

(5.1) g(X, 0) = Y( 3 4 - k cos kx), 

where y is a parameter. This is just the Fourier series of g(x, 0) = y(7r2 _ X2). It 
turns out that 

2 = (;4y22+ 
1 -1) and G'() = -2-yx < 0. 
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The series in (5.1) was truncated as soon as (2.4) was satisfied. The cost c(c) was 
defined to be the number of cos evaluations in (5.1). This generates a piecewise 
constant cost function with steps of greatly varying length. 

The Constant p Algorithm was applied with /8 = 0.99, 6 = 1, xo = + 0.5, 

= 10-7, and L = a = 0.1 initially. 
The following table gives numerical results for y = 0.2 (G'(x) = -0.61) and 

y = 0.25 (G'(x) = -0.86), and p = 0.1, 0.2, . . ., 1.0. The integer m is the overall 
computational effort until convergence was reached. For comparison purposes the 
iteration was also carried out with ek kept constant and equal to the control 
variable at the last step of the Constant p Algorithm. The number a is the ratio of 
the effort for the constant precision iteration and m. We observe that the gain in 
efficiency is quite insensitive with respect to p (and y). The actual efficiency is also 
insensitive with respect to p if p > 0.3. It is remarkable that the above results were 
obtained in spite of the true cost being a step function that is only poorly modelled 
by c(E) = eP, for any p. For all iterations the final error was smaller than the 
specified value of -q. The computed value of L was always less than ,8. 

TABLE 1. Numerical Results 

0.2 0.25 
p m a m a 

0.1 4,776 5.0 25,761 5.1 
0.2 4,061 5.4 19,984 5.2 
0.3 3,723 5.6 18,013 5.3 
0.4 2,826 6.1 13,816 5.0 
0.5 2,826 5.8 13,117 5.9 
0.6 3,077 5.0 12,852 6.0 
0.7 2,834 6.0 11,966 5.9 
0.8 2,833 5.9 12,494 5.5 
0.9 2,943 4.8 12,243 5.4 
1.0 2,943 4.7 12,130 5.4 

Conclusions. A method has been suggested for carrying out inexact function 
iterations efficiently. Apparently this problem has not been tackled before in the 
generality attempted here. The ideas and concepts are applicable to a wide range of 
numerical problems, including the iteration of series, the solution of nonlinear 
equations, constrained and unconstrained minimization, and shooting methods for 
boundary value problems. 
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